Skew key polynomials and a generalized Littlewood–Richardson rule

نویسندگان

چکیده

Young’s lattice is a partial order on integer partitions whose saturated chains correspond to standard Young tableaux, one type of combinatorial object that generates the Schur basis for symmetric functions. Generalizing lattice, we introduce new weak compositions call key poset. Saturated in this poset objects generate polynomials, nonsymmetric polynomial generalization basis. skew functions, define polynomials terms Using dual equivalence, give nonnegative composition Littlewood–Richardson rule expansion generalizing flagged Reiner and Shimozono.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Two-parameter Generalized Skew-Cauchy Distribution

In this paper, we discuss a new generalization of univariate skew-Cauchy distribution with two parameters, we denoted this by GSC(&lambda1, &lambda2), that it has more flexible than the skew-Cauchy distribution (denoted by SC(&lambda)), introduced by Behboodian et al. (2006). Furthermore, we establish some useful properties of this distribution and by two numerical example, show that GSC(&lambd...

متن کامل

A Flexible Skew-Generalized Normal Distribution

 In this paper, we consider a flexible skew-generalized normal distribution. This distribution is denoted by $FSGN(/lambda _1, /lambda _2 /theta)$. It contains the normal, skew-normal (Azzalini, 1985), skew generalized normal (Arellano-Valle et al., 2004) and skew flexible-normal (Gomez et al., 2011) distributions as special cases. Some important properties of this distribution are establi...

متن کامل

Skew Schubert Polynomials

We define skew Schubert polynomials to be normal form (polynomial) representatives of certain classes in the cohomology of a flag manifold. We show that this definition extends a recent construction of Schubert polynomials due to Bergeron and Sottile in terms of certain increasing labeled chains in Bruhat order of the symmetric group. These skew Schubert polynomials expand in the basis of Schub...

متن کامل

The skew Schubert polynomials

We obtain a tableau definition of the skew Schubert polynomials named by Lascoux, which are defined as flagged double skew Schur functions. These polynomials are in fact Schubert polynomials in two sets of variables indexed by 321-avoiding permutations. From the divided difference definition of the skew Schubert polynomials, we construct a lattice path interpretation based on the Chen-Li-Louck ...

متن کامل

Self-dual skew codes and factorization of skew polynomials

The construction of cyclic codes can be generalized to so-called ”module θ-codes” using noncommutative polynomials. The product of the generator polynomial g of a self-dual ”module θ-code” and its ”skew reciprocal polynomial” is known to be a noncommutative polynomial of the form X − a, reducing the problem of the computation of all such codes to the resolution of a polynomial system where the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2022

ISSN: ['1095-9971', '0195-6698']

DOI: https://doi.org/10.1016/j.ejc.2022.103518